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A three-dimensional model of  ground-water contamination in the zone of a steady source of tritium is 
presented. The model is oriented toward long-term modeling of  contamination (for up to several dec- 
ades) on a large area (of up to several hundred square kilometers) where the contaminant arrives 
through the roof of  the aquiferous stratum by infiltration. The three-dimensional equation of convective 
diffusion is solved numerically by the method of splitting. The convective component is calculated by 
the method of particles. The dispersion component of the transfer is calculated using the finite-differ- 
ence method. A transformation of the vertical coordinate is introduced A solution of the model prob- 
lem is presented and an interpretation of  the results is given. 

Introduction.  Tritium is among the radionuclides that are present in technological emissions of  nuclear 
power plants and of the designed ITER research fusion reactor. In comparison with other radionuclides, tritium 
has a small sedimentation coefficient, which leads to long distances over which it propagates in the atmosphere 
[1]. On reaching the soil surface, due to the activity of soil bacteria tritium is oxidized to the oxide HTO, after 
which it gets into the ground water along with the infiltrating water. Although the tritium emissions from nu- 
clear power plants and other units that use this element are small, these units have a long life cycle (of several 
decades) and cause noticeable tritium contamination of  the ground water on a large area over the entire time 
of their operation and even after shutdown. Therefore, long-term prediction of tritium contamination of  the 
ground water on a large area is needed for justifying the environmental safety of both existing and planned 
plants that use tritium. 

To date, the problems of  tritium migration in aquiferous strata have been studied insufficiently. In [2], 
a model of tritium contamination of ground water due to infiltration was proposed. Using a two-dimensional 
model, Engesgaard et al. studied tritium migration in an aquiferous stratum of length 3 km and height 50 m. 
In the review [3], only two references to works in which consideration is given to tritium migration over dis- 
tances of 20 and 32 km are presented. Here, three-dimensional models were not used for interpreting the ob- 
servations. 

Below, a three-dimensional model of ground-water contamination in the zone of a steady source of  
tritium is given that is oriented toward long-term modeling of contamination (for up to several decades) on a 
large area (of up to several hundred square kilometers) in which the contaminant arrives at the roof of  the 
aquiferous stratum by infiltration. 

Physicomathematicai  Model and Formula t ion  of the Problem. The convection-dispersion mecha- 
nism of HTO propagation in ground water is described by the equation [4] 

3C 
n--~-t + VJ + W=O,  (1) 

where VJ = div [ V C -  ~ grad C]. 
Let us select a spatial coordinate system so that it coincides with the principal axes of the dispersion 

tensor. Then, Eq. (1) in coordinate form is 
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The dispersion coefficients of  Eq. (2) are written as follows [5]: 

D~ = D m + Dg~. (3) 

The coefficient of hydromechanical dispersion can be represented as [5] 

D g = a a  [V[,  (4) 

where IV[ is the modulus of the mean velocity of the water flow. 
The coefficient of  molecular diffusion in water is of the order of 10 -5 m2.day -1 [4]. Experimental val- 

ues of  the coefficients of  hydromechanical dispersion D g that were determined for a variety of actual aquifer- 
ous strata [3] are larger than 10 -3 m2.day -l. Therefore, in solving practical problems, we can neglect the term 
D m in Eq. (3). Thus, to describe HTO migration in ground water, Eq. (2) must be solved under appropriate 
initial and boundary conditions. 

Numerical  Me thods  of  Solution of  the Problems. Equation (2) is solved numerically using the 
method of  splitting [6] into three stages [7]. At the first stage, the equation of convective transfer in horizontal 
planes 

n 
ac a (v~c) a (vsc) (5) 
3t 3x by 

is solved for each zi, i = 1, N z. At the second stage, the equation of diffusion (dispersion) scattering in horizon- 
tal planes 

Oc ~ 3C 0 bC 
n --~t = -~x Ox --~x + -~y Dy ~ + W (6) 

is solved for each zi, i = 1, N z. At the third stage, the equation of convective and diffusive transfer in the 
vertical direction 

ac o bc a(v~c) 
n - -  = - -  D - -  + (7) 

bt 3z ~ bz bz 

is solved for all (xi, Yi), i = 1, No j = 1, Ny. 
The solution of  Eq. (5) by classical schemes of the finite-difference method or the finite-element 

method entails a nonremovable error, called numerical diffusion, that increases with calculation time [4]. The 
model that is presented in the current work is intended for long-term prediction. For such calculation times, the 
numerical diffusion introduces errors that render the modeling results unsuitable for practical use. The numeri- 
cal diffusion in the solution of Eq. (5) is eliminated using the method of particles in a "PIC" cell [8]. Equations 
(6) and (7) are solved using the finite-difference method. Allowance for the rate of vertical convective transfer 
is carried from stage 1 to stage 3, since Vzhz/2, where h z is the step of the spatial grid along the Z axis, is 
comparable to and, more frequently, much smaller than D z. This appreciably decreases the numerical diffusion 
[4] and at the same time markedly reduces the number of particles [7]. 
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Fig. I. Calculation grids: a) in the physical region; b) in the calculation 
region. 

The method of particles imposes a constraint on the time step, which must not exceed the time of 
passage of  a particle over one calculation cell [8]. We now compare this step with the time step needed to 
provide stability of the solution of Eq. (6) by an explicit scheme: 

Ah 
Zc°nv - V '  (8) 

where V is the water-flow velocity; 

z:~t 2 z~  ~ (9) 
Xstab-- D - V 8 " 

The model that is described in the current work is intended for calculating tritium migration over large 
areas, and therefore, the characteristic dimension of  a calculation cell in a horizontal plane is not smaller than 
several hundred meters. From the data of [3] it follows that the dispersion 8 for actual aquiferous strata most 
frequently does not exceed several tens of meters. Thus, the factor Ah/5  on the right-hand side of expression 
(9) is much larger than unity, and therefore "~stab >> '~conv- Hence it becomes clear that to solve Eq. (6) it is 
expedient to use an explicit scheme, which in comparison with an implicit one requires considerably fewer 
calculations [9]. 

Tritium contamination of ground water results from infiltration, and therefore, concentration gradients 
along the Z axis in the initial period of time are large. To preclude substantial computational errors with large 
gradients, a rather fine-mesh grid along the Z axis must be selected, and therefore, the time step that is used 
to solve system (5)-(7) is much larger than the stability condition of an explicit scheme for Eq. (7). Hence, it 
is reasonable to use an implicit scheme to solve Eq. (7). 

Aquiferous strata on a large area must be modeled with allowance for variations in the height of the 
aquiferous stratum, which can range from several tens of meters to several meters. To put it differently, this 
means that the calculation region in a vertical plane is nonrectangular. For calculations by the finite-difference 
method, it is brought to rectangular form (see Fig. 1). 

The nonrectangular physical region is transformed into rectangular one in the following manner. For 
each node xi, i = 1, Nx, of the X - Y  plane the coordinate Z is transformed by the formula [10] 

(x) = h (x) Z(X),  (10) 
Zmax 

where Z(X) is the vertical coordinate in the physical region. 
A partial derivative with respect to Z changes as follows [10]: 

(11) 

The coordinate Z is used only in solving one-dimensional equation (7), and therefore, variables must be 
changed only in this equation. On substituting in (7) the coordinate Z and the partial derivative with respect to 
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Fig. 2. Diagram of  the aquiferous stratum. 

Z with the aid of Eqs. (I0) and (11), respectively, we obtain a rectangular calculation region and a rectangular 
grid (see Fig. lb). 

The algorithm of  solution of Eq. (2) using the above method lies in the following. Before the fwst time 
step, each particle is conferred a value of the activity equal to the activity of the calculation cell in which the 
particle is located. One time step consists of  the following substeps: 

1. New coordinates of particles are calculated (Eq. (5)). 
2. The collection of activities is calculated anew: the activity of each calculation cell is determined as 

the arithmetic mean of the activities of the particles that are located in the cell. 
3. The diffusion (dispersion) scattering in horizontal planes is calculated (Eq. (6)). 
4. The diffusion (dispersion) scattering and the convective transfer in the vertical direction are calcu- 

lated (F~. (7)). 
5. The activity of each particle that is located in the calculation cell changes by the magnitude of the 

change in the activity of  this calculation cell due to the diffusion (dispersion). 
In accordance with the general principle of  the method of  splitting [6], the same time step is employed 

in each substep. The initial conditions for each substep are the results of the solution from the preceding sub- 
step. 

Results of  Numerical  Modeling. Using the model that is proposed in the current work the problem 
that was formulated in Scenario 1.3 published by the tritium working group that carries out investigations 
within the framework of the international scientific program BIOMASS (Biosphere Modeling and Assessment 
Methods) under the auspices of the International Atomic Energy Agency [l l] was solved. This scenario sug- 
gests that the specific activity of HTO in ground water 20 years after the start of contamination be determined. 
The aquiferous stratum is infinite along the Y axis, the left boundary of the stratum X = -5000 m is a water 
divide, and the right boundary X = +5000 m is a runoff from a height of 1 m. The base of the aquiferous 
stratum is strictly horizontal. The filtration coefficient is K =  10 -4 m.sec -1 and the porosity is n = 0.4. The 

-1  
infiltration supply e = 0.150 m-yr arrives at the stratum through its roof. Figure 2 schematically illustrates a 
section of this stratum. At the initial instant of  time, the aquiferous stratum is not contaminated by HTO. The 
HTO flow to the stratum roof is steady and is specified by the following expression: 

[ 
I 2- 102 L < 0 . 5  km 

F (Bq-m2-yr --l) = { (12) 
I 102 

L > 0 . 5  k m ,  
[ L (km) '  

where L = (x2+ y2) 1/2. The stratum dispersions are assigned and are equal to ~x = 50 m, 8y = 5.0 m, and ~ -- 

0.5 m. 
Prior to calculating the HTO concentrations from Eq. (2), we must determine the change in the stratum 

height and filtration rate along the X axis. These parameters can be obtained from the solution of the problem 
of zero-pressure one-dimensional filtration with constant infiltration. The filtration (mass-balance) equation is 
of the form [12] 
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Fig. 3. Height of the aquiferous stratum and filtration rate along the X 
axis. h, X, m; V, m-day -1. 

d (h dh'~ e ~j+~=o, 

where h is the hydraulic pressure head, m; e, K, m-day -l', x, m. The boundary conditions are 

(13) 

dhl (14) x=O m:  --~--=0; 

x = + 1 0 0 0 0  m:  h 2 = l  m .  (15) 
The filtration rate is determined as 

dh (16) V = - K - - ~ .  

Condition (14) describes the water divide, condition (15) describes the runoff from a height of 1 m, and Eq. 
(16) is Darcy's law. 

The solution of Eq. (13) with boundary conditions (14) and (15) is of the following form: 

where L = 10,000 m, 

g 9 2 ,,1/2 
/ ~ -  .2 e L /  

h (x) = ( -  --k- + h2 +--~- j , 
(17) 

dh _ l[h(x)]-l/2 [_ ~-]  (18) 
dx 2 

Using relation (18) it is possible to calculate the field of filtration rates along the X axis from Eq. (16) and the 
height of  the aquiferous layer from relation (17). Figure 3 presents calculation results. 

Knowing the height of  the aquiferous stratum h(x) and the field of filtration rates, it is possible to 
proceed to the calculation of the HTO concentration in the aquiferous stratum by the algorithm that was pre- 
sented in the previous section. The dimension of the calculation region along the Y axis was taken to be 
(-5000 m, +5000 m). The boundary conditions at the roof of the aquiferous stratum corresponded to expression 
(12), and the HTO flow at the base was equal to zero. The diffusion and dispersion flows at the lateral sur- 
faces of  the aquiferous stratum were taken to be equal to zero, and the convective flows corresponded to the 
field of filtration rates. This assumption is quite admissible, since, as is shown below, the substance propaga- 
tion by diffusion and dispersion is not in excess of one step of the calculation grid. 

Figures 4 and 5 present modeling results. The first figure shows profiles of specific activities of HTO 
on the streamlines that pass through the points with the coordinates x = 0, y = 0, z = 0 and 2, 20, 50 m 20 
years after the start of contamination, and the second figure presents isolines on the surfaces that are formed 
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Fig. 4. Specific activity of  tritium oxide (HTO) in the ground water on 
different streamlines 20 years after the start of  contamination: a) in the 
region of  a water divide; b) beyond it; l) Z = 0; 2) 2 m; 3) 20; 4) 50. C, 

Bq/liter. 
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Fig: 5. Isolines of  the specific activity of  tritium oxide (HTO) in the 
ground water (Bq/liter) on surfaces parallel to the streamlines [a) z = 2 m; 
b) 50] 20 years after the start of contamination. 

by parallel streamlines passing through the points with the coordinates x = 0, y = 0, and z = 2 m (Fig. 5a) and 
x = 0 ,  y = 0 ,  a n d z =  50 m(F ig .  5b). 

Discussion of Results. In the region of the water divide (x = -5000 m), the velocity of  the water flow 

is equal to zero and, according to Eqs. (3) and (4), the mechanism of HTO propagation is totally determined 
by  the molecular  d i f fus ion.  The depth of  p ropaga t ion  o f  the di f fus ion wave  in 20 years  is Ldif = 
~/Dm'20 years = 1 m. Hence it is clear that the contamination cannot reach the stratum base in 20 years. This 
agrees with the modeling results that are presented in Fig. 4a. The filtration rate in the region x = 0 is 
V= 40 m.yr -I (see Fig. 3). Let us compare the magnitudes of  the dispersion and convective transfer in this 

region: Ldisp --- ~/(Vrx)-20 years = 40 m and Lconv = V-20 years = 800 m. The comparison indicates that, in the 
region x = 0, the transfer along the streamlines is totally determined by convection. The data in Figs. 4b and 
5b show that the concentration maximum at the stratum base is displaced 800 m downstream due to convec- 
tion. We next evaluate the depth of propagation of the dispersion wave along the vertical in the region x = 
450(05000 m. For this region, V= 150 m.yr -l  and Ldisp = ~/(V'Sz)'20 years = 40 m. This value is larger than 
the stratum height in this region, and therefore, the HTO concentration along the vertical must be approxi- 
mately constant. The results that are presented in Fig. 4b are fully consistent with this inference. The slight 
increase in the concentration in the region x = 4500-5000 m is attributable to the fact that here the stratum 

height decreases more rapidly than the HTO flow to the stratum roof. 
Conclusion. To solve the equation of convective diffusion, a method is proposed that consists in the 

following: 
1) the convective transfer is calculated using the method of particles; 
2) the diffusion (dispersion)scattering in horizontal planes is calculated using an explicit finite-differ- 

ence scheme; 
3) the diffusion (dispersion) scattering and the convective transfer are calculated using an implicit fi- 

nite-difference scheme; 
4) the transformation of coordinates along the vertical axis Z is carried out. 
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The method proposed permits prediction of tritium contamination of ground water on large territories 
(of up to several hundred square kilometers) over a long time (of up to several decades). The model can be 
used as part of a model for prediction of the consequences of environmental contamination by tritium in the 
zone of a tritium plant. 

The solution of the model problem [1 l] has some special features, namely, a steep concentration pro- 
file in the region of x = -5000 m, a displacement of the maximum at the stratum base at the center of the 
calculation region, and a concentration increase in the region x = 4500-5000 m. The presence of the above 
features in the solution permits the use of this problem for testing other programs that model ground-water 
contamination due to infiltration. 

N O T A T I O N  

n, porosity; C, activity of tritium oxide (HTO) in ground water; t, time; J, mass flux; V, vector of the 
mean filtration rate; l), dispersion tensor; W, rate of  ~disintegration of tritium; Dx, D r, and Dz, coefficients of 
dispersion along the X, Y, and Z axes, respectively; O TM, coefficient of  molecular diffusion; Dg~, coefficient of 
hydromechanical dispersion along the coordinate axis ix; tx = {X, Y, Z}, coordinate axes; ~a, dispersion along 
the coordinate axis tx; Nx, Ny, and N z, number of nodes along the X, Y, and Z axes, respectively; Xconv, time 
step needed to provide stability of the method of particles; Ah, grid step in the horizontal plane; "Cstab, time step 
needed to provide stability of the solution by the explicit scheme; Z(x), vertical coordinate in the calculation 
region; h(x), height of the aquiferous stratum at the point with the coordinate x; hi, hydraulic pressure head at 
the left boundary (x = 0); h2, same at the right boundary (x = 10,000 m); Zmax, maximum height of the aquif- 
erous stratum; K, filtration coefficient of the aquiferous stratum; e, infiltration to the aquiferous stratum; F, 
HTO flow to the stratum roof; Ldif, depth of contaminant propagation by diffusion; Ldisp, same by dispersion; 
Lconv, same by convection. 
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